Geometricko-fázová mikroskopie usnadní zkoumání mikrosvěta

Foto: Petr Bouchal
Thursday 10 June 2021, 14:00 – Text: Šárka Chovancová

Zkoumání mikrosvěta usnadní vědcům průkopnická technika mikroskopického zobrazení založená na transformaci geometrické fáze světla, která je výsledkem společného projektu Přírodovědecké fakulty Univerzity Palackého v Olomouci a CEITEC Vysokého učení technického v Brně. Metoda transformace geometrické fáze světla rozšířila mikroskopii o nové možnosti kvantitativního fázového zobrazení živých buněk a poskytla měření pro optickou mikroskopii dříve nedostupná. Výsledky vědecké práce olomouckých a brněnských badatelů byly prezentovány prostřednictvím deseti publikací v impaktovaných časopisech zahrnujících Nano Letters, Nanoscale, ACS Photonics nebo Scientific Reports.

Metoda zviditelnění objektů mikrosvěta, které jen slabě pohlcují a rozptylují světlo, v minulosti způsobila revoluci v optické mikroskopii a byla oceněna Nobelovou cenou. „Poslední dvě desetiletí přinesla v této oblasti další významný pokrok v podobě kvantitativní fázové mikroskopie, která dává možnost transparentní objekty, jakými jsou například živé buňky a tkáně, výpočetně rekonstruovat a kvantifikovat jejich parametry důležité pro biologii,“ uvedl Zdeněk Bouchal z katedry optiky. Společný projekt PřF UP a CEITEC VUT proto cílil na vytvoření nové platformy kvantitativní mikroskopie, později nazvané geometricko-fázová mikroskopie. Metoda využívá nové principy a technologie ovládání světla. „Chtěli jsme tímto způsobem sloučit výhody a překonat omezení dosud užívaných zobrazovacích metod," podotkl Zdeněk Bouchal.

Vědci se zaměřili na fázi světla, která přenáší obrazovou informaci a současně hraje zásadní roli při řízení a tvarování světla. Přes živé buňky a jiné transparentní objekty totiž světlo prochází jinou rychlostí než přes okolní prostředí. „Tím je pozměněna optická dráha světla a modulována jeho fáze, obvykle nazývaná dynamická fáze. Stejného efektu je využito u tradičních optických elementů, které díky proměnné tloušťce světlo rozdílným způsobem zpomalují, a tím světelné vlny tvarují,“ popsal Zdeněk Bouchal.

Technologie vyvíjené v posledních letech dávají možnost světelné vlny formovat zcela odlišným způsobem. Slouží k tomu geometrická (Pancharatnam-Berryho) fáze, která nezávisí na optické dráze světla, ale mění se při transformaci jeho polarizačního stavu. „Ovládání světla pomocí geometrické fáze tak nevyžaduje objemovou optiku a je realizováno v tenkých strukturách s řadou dalších výhod. Tato strategie otevřela nové experimentální možnosti a stala se základem vyvinuté geometricko-fázové mikroskopie,“ řekl Zdeněk Bouchal.

Výsledky vědeckého projektu zaměřeného na geometricko-fázovou mikroskopii byly podle Zdeňka Bouchala úspěšně testovány v několika vědeckých oblastech. „V biologickém výzkumu geometricko-fázová mikroskopie prokázala svůj potenciál pokročilým, ale rutinně proveditelným neinvazivním fázovým zobrazením, které bylo realizováno ve snadno dostupném a mimořádně stabilním jednocestném systému,“ doplnil Radim Chmelík, spoluřešitel projektu z VUT v Brně. Experimenty byly zaměřeny na měření suché hmoty buněk, klasifikaci buněk na základě morfologických parametrů a vizualizaci dynamiky živých buněk. „Takové výsledky bylo dříve možné získat jen pomocí dvoucestných systémů, které jsou velmi citlivé na vnější vlivy a mají technicky složité a nákladné provedení,“ upozornil Radim Chmelík.

Provedené experimenty podle Zdeňka Bouchala ukázaly, že princip geometricko-fázové mikroskopie je předurčen pro optickou diagnostiku struktur vytvářených v polymerních kapalných krystalech a plasmonických metapovrších. Tyto struktury totiž disponují prostorově proměnnou anizotropií, která je potřebná pro modulaci geometrické fáze světla. „Za největší přínos pro tuto oblast považujeme měření optické odezvy multifunkčních komponent vytvářených v plasmonických metapovrších, která dosahovala citlivosti až k jednotlivým nanoanténám. To bylo dříve možné jen se skenovací elektronovou mikroskopií,“ uvedl Petr Bouchal z VUT, který prováděl experimenty.

Univerzálnost a mezioborový potenciál geometricko-fázové mikroskopie potvrdila její aplikace při studiu přírodních fotonických struktur. V provedeném experimentu se podařilo s vysokým prostorovým rozlišením rekonstruovat kutikulu brouků skarabeů, známých polarizačně selektivním odrazem světla. Experimentální data objasnila prostorovou strukturovanost barev v mikroskopických obrazech těchto brouků. „Nás samotné i odbornou veřejnost překvapilo zjištění, že jednotlivé buňky kutikuly vytvářejí tisíce téměř dokonalých světelných svazků mikrometrových rozměrů, známých jako nedifrakční besselovské svazky. Takové světelné svazky jsou zkoumány v optických laboratořích a náš výzkum dokumentoval jejich první výskyt v přírodě,“ popsal Petr Bouchal.

Back

Privacy settings

We use cookies and any other network identifiers on our website that may contain personal data (e.g. about how you browse our website). We and some of the service providers we use have access to or store this data on your device. This data helps us to operate and improve our services. For some purposes, your consent is required to process data collected in this way. You can change or revoke your consent at any time (see the link at the bottom the page).

(Essential cookies enable basic functions and are necessary for the website to function properly.)
(Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.)
(They are designed for promotional purposes, measuring the success of promotional campaigns, etc.)